Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
J Environ Radioact ; 275: 107430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615506

RESUMO

Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.


Assuntos
Amerício , Bentonita , Coloides , Quartzo , Bentonita/química , Concentração Osmolar , Adsorção , Concentração de Íons de Hidrogênio , Coloides/química , Quartzo/química , Amerício/química , Amerício/análise , Poluentes Radioativos da Água/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Modelos Químicos , Tamanho da Partícula , Areia/química
2.
J Hazard Mater ; 439: 129622, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35868082

RESUMO

Removal and recovery of uranium from uranium-mine wastewater is beneficial to environmental protection and resource preservation. Reduction of soluble hexavalent U (U(VI)) to insoluble tetravalent uranium (U(IV)) by microbes is a plausible approach for this purpose, but its practical implementation has long been restricted by its intrinsic drawbacks. The electro-stimulated microbial process offers promise in overcoming these drawbacks. However, its applicability in real wastewater has not been evaluated yet, and its U(VI) removal mechanisms remain poorly understood. Herein, we report that introducing a weak electro-stimulation considerably boosted microbial U(VI) removal activities in both synthetic and real wastewater. The U(VI) removal has proceeded via U(VI)-to-U(IV) reduction in the biocathode, and the electrochemical characterization demonstrates the crucial role of the electroactive biofilm. Microbial community analysis shows that the broad biodiversity of the cathode biofilm is capable of U(VI) reduction, and the molecular ecological network indicates that synthetic metabolisms among electroactive and metal-reducing bacteria play major roles in electro-microbial-mediated uranium removal. Metagenomic sequencing elucidates that the electro-stimulated U(VI) bioreduction may proceed via e-pili, extracellular electron shuttles, periplasmic and outer membrane cytochrome, and thioredoxin pathways. These findings reveal the potential and mechanism of the electro-stimulated U(VI) bioreduction system for the treatment of U-bearing wastewater.


Assuntos
Urânio , Poluentes Radioativos da Água , Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Urânio/química , Águas Residuárias , Poluentes Radioativos da Água/química
3.
Sci Total Environ ; 834: 155332, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460788

RESUMO

Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including 79Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescale of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.


Assuntos
Água Subterrânea , Selênio , Poluentes Radioativos da Água , Sedimentos Geológicos/química , Água Subterrânea/química , Oxirredução , Selênio/química , Sulfatos , Poluentes Radioativos da Água/química
4.
Chemosphere ; 258: 127152, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32544809

RESUMO

Graphene oxide (GO) has been proved with favorable affinity to U(VI), while some drawbacks such as poor dispersity and low adsorption performance limit its application. Herein, cetyltrimethylammonium bromide (CTAB) modified graphene oxide (MGO) composites were successfully fabricated, characterized and compared with graphene oxide (GO) in the sequestration of U(VI) in aqueous solutions. The results showed that maximum adsorption rate of MGO (99.21%) was obviously higher than that of GO (66.51%) under the same initial condition. Simultaneous introduction of C-H and NO coupled with the enhanced dispersity of GO after modification were mainly responsible for the updated performance verified with multiple characterization techniques. Based on the results of kinetics and isotherms investigations, the experimental data were best described by Pseudo-first-order kinetic model and Redlich-Peterson isotherm model. The results of ΔH, ΔS and ΔG show that adsorptive behaviors of uranyl ion on MGO are endothermic and spontaneous. The study provides a feasible alternative to the chemical modification of GO and enhancing the performance towards uranyl ion removal from solution.


Assuntos
Grafite/química , Urânio/química , Poluentes Químicos da Água/química , Adsorção , Cetrimônio/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Urânio/isolamento & purificação , Água , Poluentes Químicos da Água/isolamento & purificação , Poluentes Radioativos da Água/química , Poluentes Radioativos da Água/isolamento & purificação , Difração de Raios X
5.
Chemosphere ; 254: 126855, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32361538

RESUMO

Under suboxic and anoxic environments, magnetite is one corrosion product of iron being used in nuclear waste canisters. Previous studies have reported a complete reduction of U(VI) on the surfaces of biogenic and natural magnetite crystals, while incomplete reductions to U(V)/U(IV)-containing species have been observed on chemosynthetic magnetite. To date, the reasons behind such disparities remain poorly studied. This study shows that uranyl nitrate or uranyl acetate is mainly reduced to UO2+x oxides (e.g., U4O9, U3O8, etc.) by chemosynthetic magnetite under acidic conditions. When extra zero valent-iron was added, the reaction rate was significantly increased, and an improved but still incomplete U(VI) reduction was observed. Nitrate and ferric ions are ubiquitous in natural environment. Results demonstrate that the nitrate ion associated with uranyl and the ferric ion contained in magnetite or generated from U(VI) reduction have a non-negligible oxidative effect on the final products, which could mainly account for the incomplete reduction of U(VI) by chemosynthetic magnetite in the absence or presence of extra zero valent-iron observed in this study. Furthermore, the surface loading of uranium in U-Fe systems can, in part, unravel the discrepancies in various observations. An enhanced understanding of the U-Fe reaction mechanism can facilitate predictions of the extent of uranium mobility with respect to nuclear waste disposal and radioactive decontamination.


Assuntos
Óxido Ferroso-Férrico/química , Urânio/química , Poluentes Radioativos da Água/química , Ferro/química , Nitratos , Compostos Organometálicos , Oxirredução , Resíduos Radioativos , Nitrato de Uranil , Poluentes Radioativos da Água/análise
6.
Chemosphere ; 255: 126951, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417512

RESUMO

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Assuntos
Sedimentos Geológicos/química , Urânio/química , Poluentes Radioativos da Água/química , Bactérias , Água Subterrânea/química , Nitratos/análise , Compostos Orgânicos , Sulfatos/análise , Urânio/análise , Poluentes Radioativos da Água/análise
7.
Chemosphere ; 254: 126671, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334243

RESUMO

Efficient elimination of U(VI) from uranium wastewater is an urgent task for sustainable nuclear energy and environmental protection. In this study, magnetic graphene oxide decorated graphitic carbon nitride (mGO/g-C3N4) nanocomposite was prepared and used for photocatalytic reduction of U(VI) in wastewater under visible LED light irradiation for the first time. The batch experiments indicated that the mGO/g-C3N4 (mGCN) nanocomposite could efficiently reduce U(VI) under visible LED light, and a high U(VI) extraction capacity of 2880.6 mg/g was obtained with an extraction efficiency of 96.02%. The transmission electron microscopy (TEM) elemental mapping, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses demonstrated that the soluble U(VI) was immobilized by transforming it to metastudtite ((UO2)O2·2H2O) by mGCN nanocomposite under visible LED light irradiation. This work indicated that the mGCN is a promising visible light catalyst for treatment of uranium wastewater.


Assuntos
Processos Fotoquímicos , Urânio/química , Poluentes Radioativos da Água/química , Catálise , Grafite , Luz , Óxido de Magnésio , Nanocompostos/química , Compostos de Nitrogênio , Águas Residuárias/química
8.
Sci Total Environ ; 720: 137292, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325549

RESUMO

The phytoremediation abilities of Hornwort (Ceratophyllum demersum L.) were tested under greenhouse and field conditions. Plants were exposed for 8, 16, and 24 days (greenhouse with stable isotope 133Cs), 8 days (field with 133Cs), and 8 days (climabox with radioactive isotope 134Cs). The plants were exposed to different concentration of stable Cs provided as CsCl (0.008, 0.033, 0.133, 0.267, 0.533, 0.800, 1.067, and 1.333 mM) and different activities of 134Cs (4.46, 4.46, 4.74, 4.64, 2.23 and 2.26 kBq). The results of the experiment revealed a significant effect (p < 0.001) of exposure time on Cs uptake. The results showed highest average 133Cs removal rates of 11%, 17% and 19% for 8, 16, and 24 days, respectively, in the greenhouse, 10% for the 134Cs experiment, and 27% for the field experiment with 133Cs. The results indicated that increasing the length of exposure lowered the uptake ability, hence indicating that the plant has limited capacity for Cs removal. The accumulated amount of Cs by plants is significantly dependent (p < 0.001) on the concentration of treatment and complies to a sigmoid curve. Comparison of experiments revealed the greenhouse experiment with 133Cs and the experiment with 134Cs did not differ significantly in their removal rate. However, the field experiment was significantly different from the previous two (p < 0.001), providing a higher removal rate. C. demersum was also able to resist phytotoxic effects of Cs in the greenhouse experiment for 16 days without significant effects (p > 0.05) on health. Even after 24 days of exposure, the plant resisted up to 0.267 mM treatment concentration with no significant tissue lesion (p > 0.05). These results indicate that C. demersum has potential for remediating aquatic habitats, especially in the case of acute events, where a short duration of phytoremediation may take place.


Assuntos
Poluentes Radioativos da Água/química , Biodegradação Ambiental , Transporte Biológico , Isótopos de Césio
9.
Chemosphere ; 250: 126315, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234624

RESUMO

Uranium (U) is both chemically toxic and radioactive. Uranium mill tailings (UMTs) are one of the most important sources of U contamination in the environment, wherein the mechanisms that control U release from UMTs with different granularities have not yet been well understood. Herein, the release behaviours and underlying release mechanisms of U from UMTs with five different particle size fractions (<0.45, 0.45-0.9, 0.9-2, 2-6 and 6-10 mm) were studied with a well-defined leaching test (ANS 16.1) combined with geochemical and mineralogical characterizations. The results showed that the most remarkable U release unexpectedly emerged from UMT2-6 mm; in contrast, the smallest particle size UMT<0.45 mm contributed to the least U release. The predominant mechanism of U release from UMT2-6 mm was the oxidative dissolution of U-bearing sulfides, while abundant gypsum present in UMT<0.45 mm inhibited U release. The study highlights the importance of combined geochemical and mineralogical investigation when performing leaching tests of mineral-containing hazardous materials such as UMTs with consideration of particle size effects. The findings also indicate that elevating the content of gypsum and avoiding the oxidation of sulfides can effectively help immobilize and minimize the residual U release from the UMTs.


Assuntos
Urânio/química , Poluentes Radioativos da Água/química , Sulfato de Cálcio , Minerais , Tamanho da Partícula , Radioatividade , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Urânio/análise , Poluentes Radioativos da Água/análise
10.
Chem Commun (Camb) ; 56(28): 3935-3938, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32196027

RESUMO

A bio-inspired cellulose paper-poly(amidoxime) composite hydrogel is explored via UV-polymerization. This hydrogel has a highly efficient uranium capture capacity of up to 6.21 mg g-1 for WU/Wdry gel and 12.9 mg g-1 for WU/Wpoly(amidoxime) in seawater for 6 weeks, due to its enhanced hydrophilicity, good hydraulic/ionic conductivity and broad-spectrum antibacterial performance.


Assuntos
Antibacterianos/química , Celulose/química , Hidrogéis/química , Oximas/química , Urânio/química , Poluentes Radioativos da Água/química , Purificação da Água/métodos , Adsorção , Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hidrogéis/farmacologia , Oximas/farmacologia , Papel , Água do Mar , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/crescimento & desenvolvimento
11.
Dalton Trans ; 49(10): 3209-3221, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32091513

RESUMO

A new chitosan/aluminum sludge composite aerogel (CS/ASca) exhibiting good selectivity, easy separation potential, and high adsorption capacity was synthesized by combining chitosan (CS) and aluminum sludge from waterworks (AS). The adsorption of U(vi) by the CS/ASca was assessed as a function of solution pH, adsorption time, temperature, initial concentrations of uranium, and coexisting ions. The systematic batch experiments reveal that the adsorption kinetics is described by a pseudo-second-order model, and the sorption thermodynamics involves spontaneous endothermic processes. At a pH of 4, 308 K, and initial uranium concentrations of 10-700 mg L-1, the maximum adsorption capacity of the CS/ASca for U(vi) (simulated by the Langmuir model) was 434.64 mg g-1. Data from scanning electron microscopy/energy dispersive spectrometry, Fourier-transform infrared, and X-ray photoelectron spectroscopy indicated that uranyl ion adsorption was predominantly associated with the complexation of U(vi) with the amino and hydroxyl groups on the surface of the CS/ASca. In addition, our results demonstrated that the Mg(ii), Pb(ii), Na(i), and K(i) ions had little or no effect on the sorption of U(vi) on the CS/ASca. This study provides new clues for the treatment of radioactive wastewater.


Assuntos
Alumínio/química , Quitosana/química , Urânio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Radioativos da Água/química , Adsorção , Resíduos Industriais , Cinética , Termodinâmica
12.
Chemosphere ; 244: 125411, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050322

RESUMO

Uranium is a long lived radioactive element which is naturally present in minute concentrations in igneous, sedimentary and metamorphic rocks. These rocks when subjected to weathering results in the formation of soil which also has traces of uranium. Distribution coefficient (Kd) is a crucial parameter in environmental assessment which is used to predict the interaction and transport of uranium in groundwater. The objective of the study is to estimate the Kd of uranium in soils and to develop a relation between this and the soil parameters. Seven rock samples and twenty three soil samples were collected during this study. The Kd of rock samples of different grain sizes where determined and the soil samples were analysed for electrical conductivity, pH, grain size, bulk density, particle density, porosity, calcium carbonate, cation exchange capacity and Kd. The Kd of the soil increases with increase in soil pH up to 6, after which it gradually decreases. Multiple regression analysis was performed to quantify the effect of various soil parameters on soil Kd and equations were statistically significant. Thus, soil Kd in a region could be predicted using limited soil properties with such statistically significant equations.


Assuntos
Água Subterrânea/química , Poluentes Radioativos do Solo/química , Solo/química , Urânio/química , Concentração de Íons de Hidrogênio , Análise de Regressão , Poluentes Radioativos do Solo/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/química
13.
Int J Biol Macromol ; 149: 127-139, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978476

RESUMO

Uranium (U(VI)) is radioactive and the primary raw material in the production of nuclear energy. Hence the research associated with uranium removal gained a lot of importance because to reduce the threat of uranium contamination to ecology and its environment surroundings. Thus, economically as well as environmentally friendly sorbents with a good sorption capacity have to be acquired for the removal of U(VI) pollutants from the aqueous and polluted sea samples. In this study magnetic- Momordica charantia leaf powder impregnated into chitosan (m-MCLPICS) was prepared through the impregnation method. After preparation the adsorbent undergone through various characterizations such as BET, XRD, FTIR, SEM with elemental mapping, and VSM analysis. The specific surface area (93.12 m2/g), pore size (0.212 cm3/g) and pore volume (15.35 nm) of m-MCLPICS was obtained from the BET analysis. A pH value of 5 and 0.5 g of adsorbent dose were selected as an optimum values for U(VI) removal. Kinetic data follows the pseudo-second-order model, and the equilibrium data fitted well with the Langmuir isotherm model. ΔG° (-1.6999, -2.4994, -3.5476 and -4.5147 kJ/mol), ΔH0 (25.1 kJ/mol) and ΔS0 (0.089 kJ/mol K) indicates that the U(VI) sorption process is feasible, spontaneous and endothermic.


Assuntos
Quitosana/química , Momordica charantia/química , Folhas de Planta/química , Urânio/química , Poluentes Radioativos da Água/química , Purificação da Água , Pós , Águas Residuárias/química
14.
Int J Biol Macromol ; 148: 887-897, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945442

RESUMO

In this study m-AHLPICS (magnetic Arachis hypogaea leaves powder impregnated into chitosan) was prepared and utilized as an adsorbent to remove U(VI) from aqueous and real polluted wastewater samples. m-AHLPICS was characterized by using the BET, XRD, FTIR, SEM with elemental mapping and magnetization measurements. Different experimental effects such as pH, dose, contact time, and temperature were considered broadly. Chitosan modified magnetic leaf powder (m-AHLPICS) exhibits an excellent adsorption capacity (232.4 ± 5.59 mg/g) towards U(VI) ions at pH 5. Different kinetic models such as pseudo-first-order, and pseudo-second-order models were used to know the kinetic data. Langmuir, Freundlich and D-R isotherms were implemented to know the adsorption behavior. Isothermal information fitted well with Langmuir isotherm. Kinetic data followed by the pseudo-second-order kinetics (with high R2 values, i.e., 0.9954, 0.9985 and 0.9971) and the thermodynamic data demonstrate that U(VI) removal using m-AHLPICS was feasible, and endothermic in nature.


Assuntos
Arachis/química , Quitosana/química , Folhas de Planta/química , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Pós , Análise Espectral , Temperatura , Termodinâmica , Águas Residuárias , Poluição da Água , Purificação da Água
15.
J Hazard Mater ; 381: 120984, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31430638

RESUMO

A major challenge of uranium extraction from seawater (UES) is to effectively block the biofouling without destroying the ecological balance, especially prevent the attachment of macroalgae on the surface of the adsorbent. Herein, a robust montmorillonite-polydopamine/polyacrylamide nanocomposite hydrogel is reported by a two-step method, including PDA intercalation MMT and further free radical polymerization with AM monomers. The interpenetrating structure of hydrogel lead to high water permeability with the swelling ratio of 51, which could fully facilitate the internal accessible sites exposure and increase the uranium diffusion. As a result, a high adsorption capacity of 44 mg g-1 was achieved in lab-scale dynamic adsorption. Most importantly, the prepared anti-biofouling hydrogel adsorbents display excellent anti-adhesion ability towards Nitzschia after 8 days contact. The adsorption capacity of uranium can reach 2130 µg g-1 in algae-contained simulated seawater. This hydrogel also exhibited a long service life of acceptable mechanical strength and adsorption capacity after at least 6 adsorption-desorption cycles. This new anti-biofouling nanocomposite hydrogel shows great potential as a new generation adsorbent for UES.


Assuntos
Diatomáceas , Hidrogéis/química , Nanocompostos/química , Água do Mar/química , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Animais , Incrustação Biológica/prevenção & controle , Bivalves
16.
Sci Total Environ ; 703: 135604, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31771849

RESUMO

Novel iron/carbon composites were successfully prepared via coupling of cellulose with iron oxides (e.g. α-FeOOH, Fe2O3 and Fe(NO3)3·9H2O) at different temperatures under nitrogen atmosphere. Characterization by various techniques implied that chemical interaction between cellulose and Fe3O4/Fe0 existed in the as-prepared iron/carbon composites. The site of interaction between cellulose and iron precursors was illustrated (mainly combined with COO-). The self-reduction of Fe3+ to Fe2+ or even Fe0 and the interaction between carbon and Fe3O4/Fe0 in the calcination process realized the strong magnetism of the composites. Batch experiments and spectroscopic techniques indicated that the maximum adsorption capacity of MHC-7 for U(VI) (105.3 mg/g) was significantly higher than that of MGC-7 (86.0 mg/g) and MFC-7 (79.0 mg/g), indicating that Fe2O3 can be regarded as the remarkable iron resource for the iron/carbon composites. XPS results revealed that the oxygen-containing groups were responsible for the adsorption process of U(VI) on iron/carbon composites, and the adsorption of carbon and reduction of Fe0/Fe3O4 toward U(VI) were synergistic during the reaction process. In addition, the iron/carbon composites exhibited a good recyclability, recoverability and stability for U(VI) adsorption in the regeneration experiments. These findings demonstrated that the iron/carbon composites can be considered as valuable adsorbents in environmental cleanup and the Fe2O3 was a promising iron resource for the preparation of iron/carbon composites.


Assuntos
Celulose/química , Ferro/química , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Carbono , Recuperação e Remediação Ambiental , Compostos Férricos/química , Nitrogênio
17.
Water Sci Technol ; 80(3): 397-407, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31596251

RESUMO

In this work, the study of copper particles deposition on to carbon felt was presented by pulse electrodeposition method to electrochemically degrade methyl iodide (CH3I, 1 mg L-1) in aqueous solution. In order to solve the problems linked to the heterogeneous potential distribution in the 3-D porous structure, which lead to the so-called 'black core', we successfully used low concentration of copper salt (1 mM) and negative deposition potential (-2.5 V) to obtain Cu-nanoparticles/carbon felt (Cu-nano/CF) electrode, the copper coating improved the specific surface area of carbon felt from ∼0.07 to 0.7 m2 g-1 with high catalytic activity. Results show that 98.1% of CH3I can be removed with the Cu-nano/CF electrode in 120 min.


Assuntos
Cobre , Hidrocarbonetos Iodados/química , Resíduos Radioativos , Poluentes Radioativos da Água/química , Carbono/química , Fibra de Carbono/química , Poluentes Radioativos da Água/análise
18.
Environ Pollut ; 254(Pt B): 113110, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31479808

RESUMO

Abiotic reduction represents an attractive technology to control U(VI) contamination. In this work, an abiotic route of U(VI) reduction with humic acid at mineral surfaces is proposed and reaction mechanisms are addressed by periodic density functional theory calculations. Different influencing factors such as ligand effect, content of CO32- ligands and substituent effect are inspected. The coordination chemistry of uranyl(VI) surface complexes relies strongly on substrates and ligands, and the calculated results are in good agreements with experimental observations available. For the OH- ligand, two competitive mechanisms co-exist that respectively produce the U(IV) and U(V) species, and the former is significantly preferred because of lower energy barriers. Instead, the NO3- ligand leads to the formation of U(V) while for the Cl- ligand, the U(VI) surface complex remains very stable and is not likely to be reduced because of very high energy barriers. The U(V) and U(IV) complexes are the predominant products for low and high CO32- contents, respectively. Accordingly, the abiotic reduction processes with humic acid are efficient to manage U(VI) contamination and become preferred under basic conditions or at higher CO32- contents. The U(VI) reduction is further promoted by introduction of electron-donating rather than electron-withdrawing substituents to humic acid. Electronic structure analyses and vibrational frequency assignments are calculated for the various uranium surface complexes of the reduction processes, serving as a guide for future experimental and engineered studies. The molecular-level understanding given in this work offers an abiotic route for efficient reduction of U(VI) and remediation of U(VI)-contaminated sites at ambient conditions.


Assuntos
Substâncias Húmicas , Urânio/química , Poluentes Radioativos da Água/química , Eletroquímica , Elétrons , Ligantes , Minerais , Vibração
19.
Environ Pollut ; 254(Pt A): 112891, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31408794

RESUMO

The effluents from nuclear mining processes contain relatively high content of radionuclides (such as uranium), which may seriously threaten the environment and human health. Herein, a novel adsorbent, porous hydroxyapatite, was prepared and proven highly efficient for removal of uranyl ions (U(VI)) given its high U(VI) uptake capacity of 111.4 mg/g, fast adsorption kinetics, and the potential stabilization of adsorbed U(VI). A nearly complete removal of U(VI) was achieved by porous HAP under optimized conditions. Langmuir model could well describe the adsorption equilibrium. The data fit well with pseudo-second-order kinetic model, suggesting that U(VI) adsorption is primarily attributed to chemisorption with porous HAP. Intraparticle diffusion analysis showed that the intraparticle diffusion is the rate-limiting step for U(VI) adsorption by porous HAP. After removal by porous HAP, the adsorbed U(VI) ions were incorporated into tetragonal autunite, which has a low solubility (log Ksp: -48.36). Our findings demonstrate that the porous HAP can effectively remediate uranium contamination and holds great promise for environmental applications.


Assuntos
Durapatita/química , Mineração , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Difusão , Íons , Cinética , Porosidade , Urânio/análise
20.
J Environ Radioact ; 208-209: 106024, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31376730

RESUMO

The disequilibrium of the grandparent-daughter pair 210Pb (t1/2=22.3 years)-210Po (t1/2=138 days) has been used to estimate the export fluxes of particulate organic carbon in the ocean using particulate-matter-associated 210Po. 210Po is produced from 210Bi, not from 210Pb. The half-life of 210Bi (t1/2=5.01 days) is sufficiently long compared to the rates of biological particle formation and decomposition or dissolution occurring at sea. The role of 210Bi has not yet been assessed quantitatively in the apparent disequilibrium between 210Pb and 210Po, partly due to the non-existence of 210Bi depth profile measurements at sea up to now. However, greater affinity of 210Bi over 210Po and 210Pb was found recently in coastal waters and phytoplankton 207Bi uptake experiments. Build upon these findings, we developed a primitive and simple analytical approach to elucidate the role of 210Bi in the 210Po-210Pb pair in the ocean using a simplified two-box irreversible steady-state ocean model. We assumed that the activity concentrations in the dissolved and particulate phases of 210Pb, 210Bi, and 210Po in a given water column are solely determined by the concentration of the particles, their input and output, the distribution coefficients between dissolved and particulate phases, and decay constants of these radionuclides in the steady-state ocean. The 210Bi contribution to the 210Pb-210Po activity difference in seawater is found to be significant, therefore, it needs to be considered in estimating particle fluxes using 210Pb-210Po secular equilibrium at sea.


Assuntos
Bismuto/química , Radioisótopos de Chumbo/química , Polônio/química , Monitoramento de Radiação , Poluentes Radioativos da Água/química , Radioisótopos de Chumbo/análise , Polônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...